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C~HA=~ III

P.lM'e of Estimtioa

It i frequently important that one make estimtes of man life,

rates of failufe, prcbability of survival for & given time, et of the

basis of data arising f.- life tests. The data may be generated in

ay ways; e.g., they may arise from trmcateo., censored, sequential,

replacement, con-replacement, interrupted, or combined experiments;

we mar or my uot know the exact tims -to failure. -We shall try in

what follows to give rules and procedures widach enable us to give point

and interval estimates vhich are in saw sense optimum.

Section 1.

Estimation in the Censored One Sample Case. (Nudbr of failures is

fixed . Item which fail Y.y or my not be replaced).

Basic Consideratims. Point and Interval Estimates for e

Let us make the folloving assutions:

() 1. tew are drava w4. rardm from a density function of tb
form 1 •"X/e, X > O, 9 > 0;

(il) the n item ara placed on life test at time zero and

failure times becme available in order. That is to say,

x.,, . . .. x2, . < < ... <xn , where by xI n  is at tbe

time when the ith failure occurs, (measured from the beinning of the

life test).
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(iii) the experiment is discecutinued as soon as has becom

available (i.e., after the first r observations are made).

We wish under assumptioura (i), (Ii), and (iii) to find a "good"

estimate of 9 and to give the distribution of this estimate in both

the non-replacement case (where failed itemn are not replaced) and in

the replacement case (where failed items are replaced insediately by

new items). This is given by the following theorem:

Theorem: Under (i), (ii), and (iii) an estimate based on the

first r ordered observations which is "best" in tte sense that it is

maxima likelihoodjunbiased, minimum variance, efficient, and Aufficient

is given by

(1) & , T .I

where Tr is the total life of items on tent observed up to the time

of the rth failure . in tha non-replacerment case:

(2) T, + nx ) (.-i)(xj-) + ... + (n-il)(xi-xi 1 ) + +. (n-r+l)(xr-xr-)

r
- xi + (n-r)x,

and so the "best" estinate (1) becoes

(3) i + (n.-r)xl /r.

r,n
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in the rsplaemnt "ase:

04) Tr + n(2c2 -x1) + . + n(xr-kr 1 ) - xr

and so the *best" estimate (1) becomse

The probability density funetion of in either the replace-

ient or non-replacemeet ease is given by

The. proof of this theorea is given in Appendix3D

Frou(6) it followsat once that W -n2rG Sn/G 2T /

distributed as i(2r). Consequently :if the constant 2k) is

defined as Pr(A'()> X(2k) ', then a 100(1a) percent tvo-

sided confidence inter*1 for 0 is gLven by

(X) (r X2 r)

2,2w
/a
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I TrJ equivalently (T0. co ill cover the tru&e but unknown value or 9, 100(1-a)

percent of the time.

Let c (ra) 2r/X2(2r) , then a 100(1-a) percent one-side.&o confidence
3a

Ainterval for 6 ca, be written as [c3(r,))e n, o] In Table 2 we give

the values of a (r,a) for a w .01, .05, .10, .20, .25, and .50 sad

r -(l) 20(5) 30oo) 50(25) 3100

For large r (say > 50) X(2r) in approximately normally d stributed

with mean 2r and variance 4 r ,Consequently, the two-sided 300(1-a)

percent confidence !ntervl becomes (for large r)

A\ A

(10) *

where a v2. 5?6 it c - .01
a . .960 n .05

1 .645 - .10

I.P.6 w .20

S.67 4 -. 50

In the one-sided case th, 100(1-a) percent confidence inter ol beocmes

)00

+, d
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were do 2.32 if 0.0 .o1

- L.6~5 .05
-1.282 - .10

-. 67i. = .25

-0 at .50

Etimalio of. Other Qantities:

(a) in many practical problems one does not wish to find point or

inte rval estimates for the mean life 8, but rather for a quentile

where xP is that life such that

(12) Pr(X > x .p

For the exponential p.d.f. this mes that

(13) e up or .0log;t
P

It is therefore clear that the maxim likelihood estimate of x
p

percent confidence intervals for x ar:
p

f2r4..log- 1r
2r. lo-

(Th) or equivalently



2T- log± 2 j r /
,r3, 12r)

I ,2rdloaj 2 ,)

24lg I 2 g

respectively.

10 Table 3 we give values of log r various ,eful 'alues of

Tw.-eidd and oae-sided confidence ivtvrvals for x can be found by using

Tables 1, 2, and 3 and substituting apprnpriately in equationa (14) and (15).

Remrk1: Foxnmla (15) can be iuterpreted as follows.. CT& the basic of

__the estimate 0 e we can be 100(1-a) percent confident o'f the assertion

+ Itbt the probabiLity of suviving

2r&dr" n Ip. +. +J,og - tim trott

a(2r)

i > p This is a tolerance interval statement in the sense that if we
P

obeerve for c happle we can De 100(1-*) percent confident. af the

coriectuess of the assertion %at the fraction of items in the population

aq rtyiV or more time units is > p

Rmar 2: It abould also be noted that if we obeeryo thee.

forsula. (14) and (15) give one and two-sided 100(1.a) percent cnafid.ne

baasi for the entire distribution.

if



-3.8-

(b) Prequentay v4g wish to sake cofidence statments ab(Alt Um~

propor+,ton of items surviving some preassigned tim t*0 on the basis

of the first r failure time. Since the probability of surviving

for a fixed tim t: is given by

(16)pt:* m Pr(l > t* )  - t */ 8

it is clear that the maximn likelihood est.mate of is given by

AA(rzn.

From (7) it follows Imediately that a 100(1-a) percent two-sided

confidence interval for p* is liven by

X2 A ,}'2 _X2 A ~ r.
/ (2r)t*/2r, r.m 1 ta(2r /2! rn

,!,

(18) or equivalently

-°-"(2r)t*/2r (21-/T

One-sided 100(1-a) percent confidence intervals fbr •e are particularly

iportant. It Is an lImdiate conseqnee of (9) that this oufidemee inter-

val is given by
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%e question say be azked: how large should the observed (or

equivalmatly T ) be in order that we be l00(1.a) percent confident

pt e't* l > P

?rM (19) this Uplies that

e" a 2r) t !2re,

(20) >e

Mis-£ equivalent to

A . > X(2r)t*/2r log o Tr X2(2r)t*/2 log

7he meaniag of the inequality in as follows:

If the total life observed in etting r failures exceeds

% (2r)*/2P log then we can be 100(1-a) percent confideAt that the

probability of surviving the time t is > . These values are

readily computed from Tables 2 and 3.

Numerical Examples

Note: It is assumed throughout that the underlying distribution of

life in exponential.



xa F le 1: 20 electron tubes are placed on test. A tube which fails

in roplaeed at ones Lj a new tube. The fifth failure is observed to occur

407 hours after the start of the life test.

(a) Estimate the mean life 6 and give one and two-sided 95%

confidence int-rvals for 6

(b) Estimate .9 , where x.9 is such that

Pr(X > x).9 .9

Give one and two-sided 95% confidence iWtervala for xp .9
(c) Make a one and two-sided 95% confidence statement for the

probability of curviving 100 hours.

Solution:

(a) We are dealing with a replacement situation with n - 20 , r = 5 ,

x5 a 4O.7 . The total life observed is given by T.5 20x 5  20(407) l14O

Thue it follo wse frem (3 t, .

A
0 T5/5 1628

To find a two-sided 95% confidence interval we use (7) with X2  (10) 20.-483.025
and XF 975(10) 3.247 • This gives the two-sided interval (795,5011) .To

find a one-sided 95% confidence Interval we use (9) with X2 0(10) , 18.307

This gives the one-sided interval (889,cD) . The values can also be obtained

directly from Tables 1 and 2.



(b)ite solution is foundr by mltiplying through by log .log 0 .l0%i.
A9

'11am ve got -XA 10%) lO &- 17'2-. 9 '
A 9% two-sided confidence Interval is give by (83.8,528) and a 95%

one.sided confidence interval is given by (93.7,a)

(e) 1he maximum likelihood estimate of pt , the probability of surviving

100 hous is given 'by At 0) C e- 96  . " Similarly

a two-sided 95% confidence interval for p t is givea by

(e "100/795, e "10° / 5014) (e 5 1258, *-.0199) (.8817,.9802) and a one-sided

95% confidence interval for p * in given by (e'100/889,). (e"11""1).

(.8936,1)

Ex~ame 2. 20 electron tubes are placed on test. Tubes which fail

are not replaced. The first five observations to failure were

x 14., an 182"1,20'" 26 x2,20 n 6P x3,20 '.19, ',20 - 1.45, a 5 5,2o
Estimate the mean life S and give a one and two-sided 90% ecnfidence

interval for e based on the data.

SoLution: Ibis is a non-ropiaemnt situation with n = 20 and

r x . The total observed life in given by Ta 4 Xi + 15 a

5] 36 + 2"730o- 3266 . Th it follows frM (3) that =T /5- 3266/5- 653

A tvw-sided 90% confidence interval for 0 is given by (357,16y7) md a

one-sided 90% confidence interval for 0 is given by (kag,ar) . 7hese

values are obtained using Tables 1 and 2
A

pxg .ae - An extensive life test has been ru &d a 0 based on
A

r a.100 failures has been computed. 8qppoee that 6? 1000 *Give oMe
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j &nd two-sided 95% confidence Intervals for 8

Solution: From (10) the tvo-sided 95% confidence interval for 0

is given by

/ !looo i ooo 1 /iooo looo\

'1 - (836,1244)~

From (11) the one-sided 95% confidence interval for e is given by

1 00 - (859,co)

j nsle-4: The total life observed in obtaining 5 failures is 9205

hours. On the basis of this information, can we be 95% confident that the

p -obability of surviving for a tie t - 100 is > .90 T

Solution: Froa (20) it is known that in order to be 95% confident

that the probability of surviving for a time t * i 100 is ,>.9 it is

necessary that the total observed life

T> X2  (10)100/2 log 1 68
T5- .05 88

Since the total life observed in obtaining 5 failures is 9205 hours, we

can answer in the affirmtive.

1
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~~~Suppo. that we went to IMup a, Mecbais tain

io tubes in contaumus operation for 1000 hours. Suppose that anl

we kow about the tube lif i- b ed an the da contained in Example 1.

Based on these dat*, how nany tubes should we expect to put In as

replacemnts for those which fail during the 1000 hour period? Find

a two-s ided and one-sided 97% ctnfideuce interval for the expected

niber of replacments needed.

Solution: We are in effect observing a Poisson process with failure

rate X. . 1000/e . The maxium likelihood estimate of K is, from

the solution to (1), given by X a 10009-/ 1000/1628 - 614 .fterfor

the expected number of replacements over 1000 hours is given by 100A - 614.

In exeale (1), we computed (795,5014) as the tvo-sided 9% confidence

interval for e . This gives the two-sided 95% confidence interval for

the expected number of replacernts:

- 106 (1990125a).
V)

In exasole (1), we computed (889,o) as the one-sided 95% confidence Inter-

val for 0. Therefore a one-aided 9% confidence interval for the expected

nioer of ree ta is given by

7Me limits are very wide, became the data we of Cours very inadequste,

but they do give us saw idea of what we my expect to get,!r
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Amok More generally suppose we want to keept a machais containing V

tubes in continuous operation. To do this 1 good tmbees-ust be In operation

at all time. Supose that we vent this condition to bold for a time interval

of lengt T . How mw tubes can we expect to Insert as replacements in a

time T, basin our estImates oi one or more previous life tests?

As indicated in eximple 5 we are In effect obserriag a Poisson process

with parmmeter X. - 1/O . Therefore, the expected number of replacements

If we wish to keep N Items functioning at &U t£mes In an Interval of length T

Is given by 9T / ao <02) is a 100(1.a) percent two-sided

confidence interval for G , then a 100(1-a) percent confidence interval for
the expected number of repe.cements is given by (.T/e 2 ,NT/e 1 ) - If (03-Sa

is a 100(1-a) percent one-sided confidence interval for a , then a 100(1-0)

percent confidence Interval for the expected nuber of replaceents is given

by 0~

\ 3)
In ex:Ip1e 5, a_. .05, N i 1000, T 1000, 6a 1628, 1  795, 2 5014,

and 0 a 889.3
g e6: Given the date in problem 1, find a numer r such that we

can assert with 95% aonfidence that at least 90% of the population survives -

(Note that this is a toLeronce statement).

golutiaom: We noted in Remark (1) following our discussion of interval

estmetes for the quantile xP that one-sided 100(1-a) percent confidence

statmata regard g X. are al tolerace statemts In hich we ca have

100(1-a) percent coafldene. Hene alng the solution to l(b) we an assert

that v. 93.7 Based on the data we cm assert with 95% confidence that

at leut 90% of te populatin survives . 93.7 hours.
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and 5014 log .The tvo values of p obtained are .28 and

.82 . Thus a 95% to-sded onfdene interval for pe 000
=e "I 000 / 0 (i.e.,• the probability of survtiving 1000 hours) is given

by (.28 (82) . In the one-sided caee the horizontal line x so 000

1te erseits tae line x =89 log j at P .32 Hence we can

state that (.32,1) is A 9 confidence interval for pt 100

, 000i e t

by (.28, ,82 . I h n-ie aetehrzna iex 10
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Section 2.

An Estimation Pru-ble (Fixed time of trwncation. item which fail mre

replaced by new ites)

Probles: n items are placed on life test at time t n 0 . As the test

proceeds, items which fail are replaced by new items. Life testing in terminated

at time t* . It is asseaed that the umderlying p.d.f. of life is given by

r(t )- t>O ,0>0.

We wish to do the following:

(i) Estimate e
(ii) Make one and two-sided confidence statements about e

(imi) Make probability statements about the proportion of items having

life greater than t

Solution: In what follows let r %a nsber of items which fail in (Ot*),

then the solutions are as follows:

(i) The maxima likelihood estimate for 8 ts lven by nt*/r

(ii) A one-sided 100(1-a) percent confidence interval for 0 is given

by

X2) (2r + )

A two-sided 100(1-a) percent confidence interval for 8 is given by

2ne 2nt*(2) (X2 ) "

(iii) From the results in (ii) regarding the-one-sided 100(1-a)

percent confidence intervals for e we can be 100(1-a) percent confident that at- I
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least luO b of the populaion survives ours, with

a -X' (2r+2)/2n

(3) b e

in otber wo:*ds a 100(1-a) percent one-sided confidence interval for

b i e -.t*/e is given by

.X2 (2r+2)/2n 1) obev raiu s

the results .in (i) regarding the two-sided 100(1-a) percent

confidence intervals for 0 , ve can say that if we observe r failures

In (0.,e) then a Uosdd100(1-a) percent confidence interval for

uab •-t is given by

Y( (2r+2)/2n _X2  (2r)/2
a )n

Proofs Essentially we are observing a Poisson process with parameter

1
X , here , wo" If we observe r failures in (o,t*) then the

m-inm- likelibood estIate for X' is given by

r

(6)

(T)husw
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Therefore

j (8) r~.

and this establishes Mi

It can be shown -that thft probability of observing r or fever

failures S n (0. t* 5 given by

(9)Pr(k < rO)= t/(fl*/O )k/k 2

Spr(y2( 2 r+2 ) 23 1 0 )

Thus, if G < 2nt/YX2(2r+2) then P.-(k <e r a IS This implie's'

that if ve observe the event k =r, theu we are 100(1-a) percent

confident of the corectness of the assertion that 'I >m / ?(2r+2).

In a salar way it can be shown that if e < 2nt*'/-e(2r+2-) then

Pr(k< r18):5 2 and if 6 > 2n*X 2)then Pr(k > 0

Frou this it follows that if we observe the event k -r, then we ame

100(1-a) percent, confident of the correctness of the assertion that
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( 2ne 
*/t~a

Remrk: I_ .fie 8_ 8.(7', nt*Ir+1 Then one can

write the one-sided 100(1-a) percent confidence interval for 6 as

( and the two-sided 100(1-a) percent confidence interval

for 0 as

(2r+2)' 2r

XF(2r+2) TX (r

Thus ' is involved in computing the one-siC&d interval and in

A
finding, the left-hand end point of the two-sided interval. 0 is

4AW involved in finding the right-hand end-point of the two-sided

interval. It is now clar that we can use Tables I and 2 in order

to coqmte the confidence intervals.

Remark 2: If r - O, only the estUantor 0 eakes sense cad

only one-sided intervals of the form (1) should be used.

Remark 3: The two-sided confidence intervals ir a given by

formula (2) are direct consequenes of formlae for two-sided con-

fidence Intervals for the paraeter X in a Poisson process given

by F. Gaerwood in Bicmetrika 28, 437-442, 1936. This question is

also treated in B.S. Pearson and K.O. Hartley, Biometrika Tables

for Statisticians, Vol.I, pp.71 -77, Cimibildge UALversity Press,1954.
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at * 1US 2nt4Ioz)

7- 1  (2r)
iff

frmmxlme (12) and (13) given 100(1-a) percent, one and two-sided

confidence bands for the entire distribution.

Remak,: It follove fr.- (12) that if

2nt* l( 3

- thaen %v am assert with .I.0(I-c ) percent oonfidenice that (,r,co) is

a 100 p percent tolerance interval. More precisely, if mue observes

r falus in (o0^* (where a item are constantly kept on test)

th we 2 be 100(1-) percent 100(dat tat the probabi1ltyi of

iio fo t lt t v i > p (or thet eie fractn of

the population surtivng x or more hoars 6 > In term of

0, (12) can also be written as

l(2.).) p

Ibis agma maxes it easy to couMte T ftm Tables 2 and 3-
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kep ,; 8: tI *aectcn devoted to- the testing of hypotlses

wa iada truncated replacemt life test procedure of the following

kind. a Items are placed an test, and it Is decided in advance that

the eerimmet will be terminated at &in (r ;t*), where g is

a randm variable equal to the tim at which the rth falure occur

and ts Is a trmaton time, beyond vwhih the experimnt will not be

rm. Both ro ai awe asslWed in advance before life testing

starts. If the experiment Is terminated at 'ron (i.e., if ro

failures occur before tme t), then the action in term of hypothesis

testi g Is the rejection of sam specified null-hypothesis. If, howver,

the experimnt is terminated at tim t* (i.e., t roth failure does

not occur before time t*), then the action in terms of hypothesis

testing Is the acceptance of some specified nll-hypothesis.

&See now that such a test he been run and that we vould like to

we Vie data obtaied not only for testing, but also for estiation. It

Is Sm.rel recogafied that t ere are difficulties associated with

using sm& data, since the stopping rule usually affects the estimates

which am be obtained. It is intemsting to point out that for the

tramated life test under discussion the ftUowit rule gives 100(1.a)

percentoftaided ocuridow tnterjas:

(i) f . > e I.., if the umber of obserd failure k in

(O,t) IS oD 2 , .... ,ro -1, tb a one-sided oo0(1-) percent am-

fiMuE interval is given by
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(6) K2(+2)

(i) it r t ! a one-sided O0(1-a) percent confidence intervael

im riven by

( 1' I

In Appendix 3 E we prove that equations (16) and (17) generate

100(1-a) percent one-sided confidence intervas.

One might conjecture that two-sided lO0(l1a) percent ccafidence

intervals can be defined in an analogous way a-

'4 (18) (OD ifk 0
;F(7

2nt* 2nt

•(1- ) if T -
WX h ue(2k. -s (2r

We have, up to now, nOt been able to establish this cmjecture rigorously.
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P2rolem 1: 30 items are placed an test. Itemb which fail are

replaced. f1te life test is srappud after 100 hours have elapsed.

Five failures are observed in the course of the experiment. Assumint

that the underlying distribution of life is exponential, find

(a) An estimte of the nean life 0 • Give one and two-sided 95%

confidence intervals for 69

(b) Make one and two-sided 9% confilence stAtements for the

probability of surviving 100 hours.

(c) Make one and to-sided 95% conflence s ,tements for the

)robility of surviving 50 hours.,

Solutlon:

(a) In this problem n - 30, t* a 100, the observed number of

failures is r :a 5. Thus the maximum likelihood estimate for 0 is

gi aen by 6 .n /r c4o0 ..QWSItuing in . .or..la ".and

using -0 (12) i.0o26, one gets the one-sided.95% confidence.05
interval (285, ou) . Substituting in formla (2) and using X. 5 (12)-23. 33 7

.adX2..41) w 3.2J47 one gets a 95% two-sided confidence interval (257,1848).

(b) A one-nided 95% confidence interval for surviving t* = 100

hours is given by (e"2 "I '2 6/60 ,1) (e '3 5& ,i) (.704,1).

A two-sided 95% confidence interval for surviving t w- 100 hours

Is given by

(e-23.37/60, e"3.247/60 )  (0"'3889 , e"'°54) a (.6778, .-973) •

(c) One end two-sided 95% confidence intervals for the probability
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of surviving -r O hours we iven by (e' 5 ,l) (8393J1) and
l(e' 19 45 , e '0271) - (.8232, .9T33) respectively.

Problem 2: Given the data in example 1. Ectimate T so that we

will be 95% confident that the probability of surviving r hours is

at least .9•

Solution:

a a 30, e w 100, r 5, m 05, and p= .9 Thus substituting

in (14) ve have

re directly, sing tables 2 and 3 and noting that r 00,

one gets T -(50o)(.571)(.1054) - 30.1

On the basis of the data we can be 95% confident that the probability of

surviving 7 30.1 hours is > .9 •

Problem A truncaated replacement test consists of placing 30 item

on test for at most 100 hours. if 3 failures occur before 100 hours, the

life test is stopped at once and the lot is rejected. If, however, 3 items

have not yet failed by the time 100 hours have elapsed, the test is terl-

nated at 100 hours with acceptance. Item which fail are replaced at once

by new items. Give a 95% one-sided confidence interval for 0 if one

observes exactly one failure.

Solution: We use formasl (16) with k a 1, hence a one-sided 95%

confidence interval is given by
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2&t. (6=

Pzblet 4.SUMO.SO it bapP~ned that the third failure was

i observed to occur at 50 hou -s. Give 95Y o ad two-sided cofidence

intervals Ji this case.

5ouio:We usefraIry with k 3 1 3Q 50.

Hence a one-sided 95% confidence Interval is given by

tX , ,c , o o ( 2 -3 , coki

SubstI.tting in fouls (19) we Set

as a t.i 9 m in-tr -!uatwo-sietd confidence Inuterval..
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SECTON 3

AN flTIMTIO3 PROBLEM

(Fixed time of truncation t*; failed items are not replaced)

Problem: n items are placed on life tet for a time t*. At

the end of this time one counts the number of items that have failed in

the tim interval t:0, t*J. Items that fail are ;not replaced. We wish

to do the following:

(i) Give an estimate for. he probability of surviving for a

t length of time t* and further estimate the mean life 0, if the

underlying distribution is exponential.

ii) Make one and two-sided confidence statements about the

-- "probability of living for more than t*. Stated in reliability language

we wish to make probability statements about the reliability of items

in Lo, t*J.
(iii) Make one and two-sided confidence statements about the uean

life 9 in the case where 'cbe itnderlying distribution is exponential.

Solution: In what follows let r - number of item which fail in

to, t*j, then the solutions are as follows:

(i) The maximum likelihood estimate nf the probability of our-

viving more than t* time units is given by

If tthe underlying distribution is exponential, then p 0 and, hence

(2) n *i (L .

{r_
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(iI) There is a confidence of 100(l -a ) percent attached to

the statement that at least 100 b% of the population survives for a

length of time t* with b -given by the formula

(3) 1. +

1 + (E-)F + 2, 2n - 2r)

In other words the one-sided 100(i - OL ) percent confidence interval for

the probability of surviving t* time units is given by

I+ F. (2r + 2, 2n - r) "

Pot (n n2) is defined in such a way that Pr(.Tt(n,, n2 ) A Fo.(nl, n2)) I n,,

where F(n1, n2) is the F distribution with nI degrees of freedom in(2
the numerator and n2  degrees of freedom in the denominator.

A two-sided 100(1 - aL) percent confidence interval for the

probability of runr±viing t time I nits is given by

( )~ +l 1 1.. .

1 +(n.-- ) F(2r+2, 2n-2r) +( - + (2r, 2n2r+2)

These results are completely distribution free.

(iii) In the case where the underlying distribution is exponential,

one obtains

(5) '( ' +I t' '  Co

as a one-sided 100(l - ) percent confidence interval for 8 and
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(6) ( ~ (+ F(2r2 -r o 6JE (_rr) Fg,2,2n-2r+2v)

2

as a two-sided 100(1 - *L) percent confidence interval for 9.

'Proof: (i) Formulae (1) and (2) are obvious.

I (ii) Suppose that we observe r failures in the time

interval (0, t*J axd that p = probability of failing in [0, t*J and

q = 1 - p = probability of surviving in 0, tJ. Suppose that p0  is

such that

Ik n-k
t, (7) ()Po% = "

kao

then we can state that Pr(k4 rfp)! d. if p a p0  Hence if we observe

k r., we can be 100(1 - oL) percent confident that p.4 po or that

q = - p > 1 - po = qo. The question arises as to how one computes qo"

This can be done very easily by expressing (7) "1 an B-C ta Func-

tion and then using the well-known relationship between the Beta and F

distributions. If this is done, one discovers that

r + i1
1 + L- ) (2r + 2, n - 2r)

where FO (nl , n2) is defined in such a way that Pr(F(nl, n2 ) _ F (1, l))

* oL, and where n1  and n2  are the number of degrees of freedom in the

numerator and denominator respectively. Taus (3) is established. in this

connection one should also read S. Takada and S. Shimada, Part l, July 1954.,

pP. 147 and 151. See bibliography given in the Appendix.,

In Table 4 we give the values of q for

n = 1(1)20(5)30(10)50(25)100(50)200(100)500; for 0 d .01, .05, .10, .25, .50



-.3.31-

and r = I(!). min (n, 20),, In Table 5 we tabulate qo for n 1000,

5000, 10000, 50000, 10000U, 500000, 1%00000; for OL = .01, X , .10,

.25, .50 and r 1(1)20(10)100, 200, 500.

Two-sided confidence results are obtained by finding p p1 and

p = P2 such that
ri

(r n k n-k .o ,

and

}, ~n.k k nk
: (10) k() P2 q2 T --

Hence if k = r is observed we can be ioo( . - o.) percent confident that

4 P p  Pl or that ql c q < q"

The computation of q, Ond 92 involves expressing (9) and (10) as an

incomplete Beta Function and then using the well-known relationship be-

tveen the Beta and F distributions. If this iUdone it turns out that

r+ 1
= + (L r) F (2r 2) 2n -2r)

and

q2 ( 1-

1 + (n r + (r,'2n-"2r +2)

Thus (4) is established.

Tables for ql and q2 are being computed for the values of n,

eL, r used in Tables 4 and 5.



In the particular case where the urerlying distribution happens

to be exponential, (8) inplies that (5) is a one-sided 100(l - ) percent

confidence interval for 9 and (11) implies that (6) is a two-sided

100(1 - *L) percent confidence interval for 9.

Resmark: One and two-sided 100(1 - oL) percent confidence intervals

for the probability of surviving an arbitrary time not necessarily

t* are given, in the exponential case, by

(12) .1e+ n(r + 22n-2r 

and

(13) + F (2+21 2n2rj TT F1+(2r. 2n-2r+2 5)
respectively.

Remark: It happens sowetimea that n is very large and r is

very small. It is useful t- note that in this case (3) becomes

(14)* b-. - r+11PoC1+ (L~~A) .(2r +2,c)

In other words, the one-sided 100(i - CL) percent confidence interval for

the probability of surviving time t* is given by

r + ( ) F,(2r +2, co) )Uir + +2)
1+ 2n

Similarly a two-sided 100(1 -- os) percent confidence interval for the

probability of survival is given by



(r- 1,(2r +2, CD) '1+ ()F 1 1 ( 2r, OD)/

74 + I)2 + 12)/n

T Lx

In (15) and (16) we use the fact that F (in, )
It all of the results obtained up to this point in Lhis section,

we have not made any use of the failure times of those items which did

indeed fail. because of this we were able to state a certain number of

non-paramntric results. However, in the event that the underlying di-

tribution of life really is exponential we are clearly losing some informs-

tion, at least when n, the number of items originally placed on test is

Ssmall. We say this because of the fact that if n were very large, then

we would be effectively dealing with a replacement situation. In this

Case , the knowledge of actual times to failure is irrelevant if the

underlying distribution is really exponential. It is only for smlll or

moderate sizes of n that it would inke a difference whether or not we

use our knowledge of the actual times to failure of those item which

did fail.

Throughout we assume, as before, that we start the life test with

n items and that we do not replace failed item. Let r = number of

items which fail in (O, t*) and let r '. t '. the
1 - 2 .t4 eh

failure times. We assume further .that the underlying distribution is

exponential. An exact solution to the problem of finding 100(1 -

percent confidence intervals for 9 is easy in principle, but difficult

to carry out. Hence we give, without proof, some approximste procedures
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which are- good enough in mat practical problems The fist result is

that approximate one-sided 100(i - at) percent confidenoe intervals for

e are given by

(17) 2 ) for r =0 i2, ...1n 2 n

r

where T(t*) E 'r ( - r)t*
iil

and

where
n

T-r n ) --  r i ,  if r= .

Approximate two-sided 100(1 - o-) percent confidence IntervFLls for

0 are given by

() if r=02

by ( 2T(t*) _ 2T(t*) if r 3., 2, ... , n - 1

22

and by ( 2T(?n#, 1;.n
-5 --- (2) if r ..a..

2n) /-
Formulae (17) and (18) should be corqeed with (5) and (6) respectively.

Ro=n4r: It is-convenient to define V as A r 1)

#~A
for r ; , ,2,..., n - i and as e a T(In)/n for r n. Formula

(17) then becomes



V

a0) for r , 1., 2, .e,-n . and

(" )
*I,2r +2)

A
no OD for r n

and foxmua (18) be-onmi

~)for r 0

(18 ) A( ~ +)9 2Gfor r 11,2, .~n-I

and

ii , uc that P(X x -.' i~e , x. e log Then E~l rox .te, one-

and two-0ided 100(1 - od) percent onfidence intervalsi for x re obtained

by ulti~p]4yng the formu1ae in (17), (17'), (18), (18K) by 1og PI urther-

more it foll.ows that if

(19) t -+ o , r. 0, 1_,2, .... , n -. 1

andi ,

2nC log for r -n

t Pen wo can be appromatety iu(i ea) percent confident of the corrct-

ness of the assertion that the fraction of the population surviving t or
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Smore hours is ; p. As before one-sided coAfidence intervals on quantiles

axe ec,14.Llent to one-sided tolerance statements about the populatiov.I with the same confidence.

If we want to place approximate one and two-sided 100(1 - CL)

percent confidence intervals on p.,- s , the probability of sur.-

vkiring ?' hours, the results are as follors:
2N12r+ ) 7_" 2 + 2)/2(t*)

(20) 2(r + 1)_ 1) or 
j

for r= O, i, 2 ... , n-

and

~2n) 6 X~n/J(n
if oforr = nSt., )ecn or r n

are approxinate 100(i -) perent one-sided confidence intervals on

P pr and

i (m) nt*(2) I for r 0

V2S ;( 2 r 2 _)2
" 2r !)" w - for r =1,2, ...,Pn-1

2(r + 11,Wfo

/ 2(2n) TXA(2n)

e 2fe- 2 for r n
are a p m e , e o- ceo

are approxisate 100(1 - at) percent two-sided confidence intervals on p

LI
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Suppose that the data are originally obtained in the course of

running a truncated non-replaement life test wita preassigue truncation

time t* and maximum allowable number of failures r The stopping

rule is min(T t*) where on is a random variable equal to ther n; r0 ,n

time at which the ro'th failure occxrs. Then the following rule gives

approximate 100(1 -l) percent confidence intervals for G.

i Xf C r t* i e,, if the number of observed failures k
0in (0, t*) is 0, i, 2, ... , r0 - 1 then an approximate one-sided

100(1 - a) percent confidence interval is given by

(22) 2T (t* Co k), k= 0., l2 2. - 1
~X,,2k +~ 2)

where

T+ (n kt*

or equivalently as

2 k 1- 2) /

where W T.(t*)/k + 1.

(ii) If r .4 t*, then the appropriate interval is

(23) (j(2 r) ) 2 2r O)
Va(2ro) a 02r

where
r

r 0 0

an e T Fr )/r oand0
0
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In an analogous way, we can obtain approximate two-sided 100(1 - c)

percent confidence intervals for 0.

Remark: We wish to re=euhasize that in the last few pages we

have given results which have not been and probably cannot be rigorously

established. However, they can be used as good approximations to true

results. Further discussion of this point is deferred to the Appendix.

Nuerical Examles

Problem 1:' 20 iiems are placed on life test for 100 hours. Two

items fail before this time. Items vhich fail are not replaced.

(a) Make non-parametric 9% confidence statements (one and two-

sided) about the probability of items surviving 100 hours.

(b) If the underlying distribution is exponential find one and

two-sided 95% confidence intervals for 0, the nean life.

(c) If the underlying distribution is exponential, give one and

two-sided 9% confidence intervals for surviving r & 50 hours.

Solution: (a) In thi problem, n = 20, r - 2, a .05, t 100.,

Since F.05(6, 36) - 2,36, it follows from (3) that a one-sided 95%

confidence interval for the probability of surviving t* - 100 hours

ts given by (.718, 1). Since F. (6 , 36) - 2.79 and

F38) . 1/8.42, it follows from (4) that a two-sided 95%

confidence Interval for the probability of surviving to - 100 hours

i &Ivan by (.683, .988);

(b) From (5) a one-sided 9% confidene interval for G is given

by (3 o, co) and from (6) a two-sided 9% confidence inter',val is

given by (262, 805).

(c) Fro m (12) a one.-sided 95% confidence interval for tbe-probability

of surviving 'r 5 0 hours is given by (.847, 1) and from '13) a w-sIdd
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I . 95$ confidence interval for surviving T a 50 hours is given by (.826, .994).

Problem 2: Out of 10,oo0 items tested, no items were observed to

fail. Give a one-sided 954 co:nfidence interval for the probability of

survival.

Solution: In this case n = 10,000, r a 0. Since n Is very

fidence interval is given by (.9997, 1). In other words, we have 95%

I confidence in the assertion that the true probability of survival is

II Z .999, if no items are observed to fail in a sample .of 10,000. The

answer can also be found very easily by using Table 5.

Problem 3: Out of 10,000 iterms test~d, 10 items were observed to

fail. Give one and two-sided 95% confidence intervals for the probability

of survival.

8 lution: In this case n 10,oo0, r 10. Since n is very

large F 0 5 (22, 19980), F 5(22, a) c 1.5,) and so the one-sided 95%

confidence interval for the probability of survival is (.9983, 1)- In

other words, we have 95% confidence in the assertion that thp true proba-

bility of survival is Z .9983, if ten items are observed to fail in a

sample of 10,000.

In the two-sided case F.0 2512, 19980)= 1.67 and F (20, 19982)
025 .975

- 1/2.00 a .500 and so the two-sided 95% confidence interval for the

probability of survival is given by (.9982p .9995).

Problem 4: A sample of 20 tubes is placed on test. Experimentation

is truncated at tine tu 500 Items which fail are not replaced. In

this particular sample 6 items fail before t* a 500 hours. The total

life of the 6 items which failed before t* - 500 was 956 hours. Estimate

the mean life 0 and give one and tuo-sided 95% confidence statements for

0 . the mean ]jf *
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Solution:' (1) let us solve the problem ignoring the infurmation

that the total life of the 6 failed items ' 956 Thus we use formula

(5) with t* = 590, n = 20, r = 6i a .05. This gives the one-sided

95% confidence interval

log 1 + 50 F.(Ii 28 W) + O)0

I :)E (. ,o3 OD U , Co = ( Wo6., o ).

Similarly us ig formula (6) we get the two-sided 95% confiderice interval

--- 30) WE50

( i ,, 1 .lg 1+J-) 1,3
log 11+2+

lo I ( (-7 q6

500o0 0
iog (2-115i) "lsog 1.13 -7 = ' ) =(4,35)

(2) If we use the fact that the total life of the-6 observed

failures = 956 we can use (ly') or (17') to find a one-sided 95% confidence

interval, In this problem

6
T~tx) ?ti + 14t* - 956 + 7000 - 7956.

i'ml

Yurther T ) = 1137, Using (17') and Table 2 we get the one-sided

7

95% confidence interval (11Y3)(.591), c0) - (672, cip. Substituting

in (18') and using Table 1 we get the two-sided 95% Confidence interval

536) (1326)(2t290) (60'9, 3613). The confidence intervals
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obtained by the two methods, one of which ignores the actual failure

times are surprisingly close considering the smIlness of the sample

and the fact that we are dealing with a specific experiment.

Problem: Given the data of Problem 5, find one and two-sided

95% confidence intervals for x 9 , the time which is such that 90 per-

cent of the items in the population live longer than x

Solution: We multiply the numbers obtained as 95% confidence

limits for 9 by log Thur the one-sided 95% confidence interval

for x is given by (71, co) and the two-sided 95% confidence inter-

val is given by (64 381)-

Remark: We can interpret the one-sided 95% confidence interval

for x 9  as a one-sided tolerance statement, namely on the basis of the

data we can be 95% confident in rxaking the assertion that at least 90%

j of the population survives x 9 - 71 hours.

Problem 6: A certain comany guarantees a television tube for the

first month of use. Out of 1000 tubes sold, 50 are returned under this

guarantee.

i) Make a non-parametric one and two-sided confidence statement

about the proportion of tubes lasting at least one month.

(ii) Assuming the exponential distribution to be valid, estimate

the mean life G, and give one. and two-sided 95% confidence intervals

for 8.

(iii) Assiming the exponential distribution to be valid, estimate

X.5 , the time when we may expect 50% of the tubes to have failed. Place

one and two-sided 95% confidence intervals on x

Solution: Clearly this problem can be considered as a truncated

without replacement situation with n 1 1000, t* 1 i, and r . 50. TPhe
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problem can also be considered as coasisting of 1000 non-replacement

truncated life tests, where each life test consists of testing n = I

item for at most t* = 1 hour. The customer carries out this life test

and in a sense accepts (keeps) the tube if it survives for one month

and rejects the tube (is given a new tube) if the failure occurs before

one month. We will assume that accurate records have not been kept and

that we must base our estimate on the number of failures reported. From

(i) the maximum likelihood estimate of the proportion of tubes surviving

t* M 1 month is given by nr 1000- .950. A one-sidedn - i000 2=.90 n-ie

95% confidence interval for the probability of surviving t* .1 month

is given by substituting in (3') with r1 50. n 1000. This confidence

interval is

1 51 . 5 (102, 9 + ( 937, ).
950 050

A two-sided 95% confidence interval is given by substituting in (9). This

gives

(1 1
0 + _2. (102,1900) 1 + -0 F (100, 1902)

950 025 951 .975( 00

(7-_ 1 (.934= , .963).
95 - 95X1 35

This gives the solution to (i).

To solve (ii) we substitute in (5) and (6) respectively. This gives

the one-sided 95% confidence interval for G,
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and the two-sided 95% confidence interval for 9,

1 1 -(14.6,26.5).

The best estimate for 9 is

ii10 19.5 months.
I109

To solve (iii) we multiply the answers in (ii) by log 2. Hence

the maximum likelihood estimte for x is (19.5)(.693) = 13.5 months.

One and two-sided 95% confidence intervals for x.5 are given by (10.7, a0)

and (10.1, 18.4) respectively3. One can interpret (107, oo ) as a one-

sided tolerance interval in the following sense: Based on the data and

acs-uming the exponential distribution we can assert with 95% confidence

4ithat at least 50% of the items survive 10.7 months.

It is interesting to raise the question: Suppose one knew the

actual failure times of the 50 tubes which fail. How much would our

estimates and conifidence intervals chaige? A reasonable assumption is

that the total life of the failed items is about 25 months. This amounts

roughly to assuming that the 50 failures are uniformly distributed over

one month. Thus T(t*) = 25 + 950 = 975. As a good-stlmate of 9 with

very little bias we take 8 = + 1 2. 19.1 moths, One and two-

sided 95% confidence intervals for 6 are given by substituting in (17)

and (18). Thus the one-sided 95% confidence interval for 0 is given by

X2
0 (l02) ,

and the two-sided 95% confidence interval for 9 is .given by
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t*2T(t*) * 1950,T 1950) -(4.8263).
2 131 .6 7rff

.1 The beat estimate for x5 is (19.5)(.693) - 13.5 months. One and

two-sided 95% confidence intervals for x.5 are (10.7, s) and (10.3, 18.2)

respectively. It would appear that little is gained from actual. knowledge

1 of the failure times. More ill be said about this later.

Problem 7: 20 items are tested one at a tim. if the item fails

before 1000 time units have elapsed, the experiment is stopped. If the

item is still living after 1000 time units have elapsed, the experiment

is also stopped. 5 items are observed to fail with failure times 100,

4W0, 600o, 800, 900 and 15 items are still living at 1000 hours. Give 95%

one-sided confidence intervals for Pr(T * t* o 1000), the probability

of surviving t* = 1000 time units.

Solution 1: In the notation of this section, n = 20, t* M 1000,

O4 = .05. A non-p1rametric solution is given by substituting in formula

(3). Thus we are 95% confident of the validity of the assertion that the

probability of surviving t* 1 1000 time units is

1 1 1 ,

1 + F (12, 30) 1. + " (2.09)

Put in reliability language, we are 95% confident of the correctness of

the asertion that the reliability is 2 .544 over the time interval

t*- 1000 units.

Solution 2: Another solution is obtained by assuming that the under-

lying distribution is exponential and applying (20). We first calculate

T(ti) - ri + 15t* 1. oo + 4oo + 600 + 80o + o90 + 15(1000) -17800.

.7800



-Bubstituting in for mi (20) we can be 95% confident of the correctness

of the assertion that the probability of surviving time t* = 1000 is

t. X 2 (12)l(t*- 1W) - looo (21.o26)356oo

Put in reliability langua6e, we are 95% confident, of the correctness of

the assertion that the reliAbility is '! .554 over the tie interval

t* 1 1000 time units.

It should be noted how close the two results (non-parametric and

exponential) are. Because of its validity under much more general condi-

tions , one would normall.y prefer the non-parevetric solution 1.

r I



SECTION

ESTDO O BOF NED RELMTIVE R" FOR 9

Problem: To give an estimation procedure for the mean life 0

having a small relative error. Put more precisely, give a procedure

which will yield an estimate which is, with some preassigned confidence

1 - *I,, within a certain percentage (100 6 percent) of the true, but

unknown mean life 9. In practice, ot and c will usually be smll.

Approximate Solution: In the exponential case, the answer involves

finding r, the number of failures, uch that(i(i)

Such a requirement will in general make it necessary that r be large.

Aet T be the total life associated with observing r failures and let

"ATjr. Then it can Ibe assumed saely that fr" -O,/ e is proi

amtely distributed as N(O, 1). Thus to meet the conditions imposed by

equation (1), means that r must be chosen in such a way that

2 ,,
r ) r Af

where c, = 2.576 if ,= .01

-1.960 CL .O.5
- 1.64e5 L a .10.

SIf J- .01, .05, .10 and -= .01, .05, .10 the values of r required

are tabulated in Table 6.

C
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TABi 6

tValues of r

J .01 .05 .0

.01 66,400 38,400 27,100

.05 2654 1537 1082

.10 664 384 271

Remrk: The exact solution to this problem involves considerations

analogous to those in the paper 'Estimates of Bounded Relative Error in

Particle Counting" by M.A. Girshick, H. Rubin, and R. Sitgreaves in the

ANNAIS OF MATHEMATICAL STATISTICS 26, 276-285, 1955. The values of r

obtained in the range 0 -e oL - .10, 0 < .10 are almost identical

with those tabulated above. Further the "best" estimator of 9 in a

minimax sense for fixed r corresponding u Lhe lub funciou,

(3) L(, a)=0 if 0 if .. +4

i1 otherwise

is given by the estimator

2-fT
r(4) a =

r log 1 +

^ T
However, for O4 1 .1, a~ er - , since

T 2

a\3
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RemrX.~ Oie f-au show tVuat ovi, eofideree in~ the veCllit.v of' the

assertion that 1 ni4. i-4" Ahr a 2 6fT r/r log

is given for any preassigned r' by

' r

, - - g _< F --)7, :, ! " r lee" -

OD r _

For exarm j)l3, choose r: 10 and 1-= 0, then it is readily verified.

that

'1 -

2% .629 ... , 9.

Inohr od,'ecan n' ve prxmtl 5 enfdnei assert ion

tIt " TJI s rixbh:n i0% ofthtrermnlie@

I __ "AAA
Ioj __W___.
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I. Now many tubes should be tested in order that there is a

probability of at least .90 that the estimate is vithin' 10 of the
~true man life?

solution: In the notation of (1) and,(2), 6..,, a u .1, and

c a  1.645. Therefore the number of tubes tested should be

> (i00)(1.645) 2  271. If the underlying distribution is exponential

3' this that we must observe at least 271 failures In order to get,

SAn ostiate such that we can be 9% confident that the estimator is

within 10% of the true but unknown mean life.

2. We have available information from a life test In which 5

falures occurrd with associated total life Tr s 1000. Assting

an exponetial distribution, find the minimax estimator a associated

wi vJth the- function

L(0,a) a-0 if .8< < 1.2

- 1, otherwise.

Also compute the confidence that we will have in the correctness of

the assertion that .8< < 1.2.

Solution: (), the minimaz estimator of 0 based on the

5 ftiures is given by a a - 2(.2)(200)/3o6(22) = 80/io(1.!5) . 197.

To find the confidence In our asertion that .8 < a/0 < 1.2, we Use

foz a (5). k.is gives us

Confidence y (k;6.08)- p(k;li.06)s.7255- .3829..3126..
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M TWO ARAWMEPTI D TIM

It has been found in mny problems of life testing that there are

fr occabions when a two parameter exponential distribution is, more appropriate

far fitting life test data than is a one paramter distrbution. By a

I pramter exponential distribution we mean a density function

f(x; 90 A) such that

I _-(x - a)!Qf!. () (x; 6, A) =. U e x a A at 0, o .o

A can be thought of as a guarantee period within which no failures can

occur or as a minimum life. if A = 0, equation (1) reduces to the one

parameter exponential.

Problem: A camle of n items is drawn at rando= from a population

whove p.d.f. is described by (1). The experiment is terminated as soon as

the first r failure tiles xI  X2  ... xr  become available.

Items which fail are not replac.ed. Give "best" estimates for the unknown

parameters A and 0.

Solution: It can be shown that x,, the time to observe the first

failure, and T(xr - Xl), the total life observed in the interval (xi, Xr)

are matually independent and jointly sufficient for estimating A and 0.

Sufficiency means roughly that xI  and T(xr - xI ) jointly contain all

of the relevant information for estimating A and e that can be obtained

from the flrst r failure times, x1 _. x2  . ... x2 Xr. Best estimtes

E. for A and e in the sense that they are unbiased and min±-, variance

are given by



n

l7!
A

. and

(3) A

where

T(x r . x ,  (n-,(x 2 -xi) + (n ? ).(x, x
rr ' 2,,,

+ (n r + 1) r -,.

(n- .)x - + X .. (n r + 1)Xr

It is often convenient in (3) and (4 to use, tl e fact that

xr - ) - r ,

where r
T~x) x +(n -rcrr i

'ii

Confidencte 'IMits for Z are easy to obtain from the fact t.hat

2( l)ONg = 2 "(x r /( is distributed as 42(Rr - 21. Thiu for

r _ 2, one anm two-sided _O0(l - o&) percent confl.clence intervals for

e are given respvctiv-ly by

2 r I 2T(x -x,

2(9- co or (T

2)

2 7 ' (2r -2))

2/
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it follows that the desired 100 jr percent confidence interval for A

is given by

Since z =w/r - I we hAve, of course, the sav confidence interval

as before. However, z is computable f'or any r and any .

Remark 2:

n(x I - A) n(x1 - A)

(r-1)"Q T (xr -x 1,

can be interpreted as the ratio between the total life between time A

and Xl: the time when the first failure occurs, and the total life be-

IN Xtwoen x1  and xr inclusive. Clearly one wants to reject the hypothesis

that A = 0, if nX/T(xr - x,) is too large. It should be noted that

under the hypothesis that A = 0, nxjk(xr - xl)/r ]P(2, 2-2)

Remark 3: Either formula (7) or its equivalent, formul (10). can

be used to test whether or not A differs significantly from zero. If

ia T(x- l
x, - w - or equivalently x1 - zV% are 0 O, then A

is significantly greater than zero at the (1 -I ) level.

Remark 4: The 100 X percent confidence interval for A can be

Interpreted as a one-sided tolerance interval. More precisely we can

make the statement that all items live longer than XI - zr I n

(or x - r ) ) with confidence . 100 percent of these

assertions will be correct.



1. 20 items are placed on test. Testing is terminated after one

has observed the first 10 failures. Suppose that the first failure occurs

520 hours after the experiment starts. The total life observed between

the time when the first failure occurs and the time when the tenth failure

occurs is 12000 item hours. Assuming that the underlying distribution is

exponential do the following:

(i) Test whether A > 0 at the .05 level.

(ii) If A > 0, find the shortest 95% confidence interval for

A and an unbiased estimate for A.

(iii) Find an unbiased estimate for 9 and one and two-sided

confidence intervals for 9.

Solution: (i) Suppose that A = 0, then .i(Xo. x1 )/9 is

distributed as F(2, 18). From the data

nxl 1 20) (520) . ( 2)

T(x 1o- x/9Z 12OO0l9 6W

But the upper 5% point for F(2, 18) is 3.55. Hence A is significantly

different from zero on the .05 level. As a matter of fact, since the upper

.5% point for F(2, 18) is 7.21 and the upper .1% point for F(2, 18), is

10.39, A is significantly different from zero at between the .001 and

.005 levels.
(i1) From the data - (x10 - x1)/9 - 12000/9 - 1333. Bence an

unbiased estimate for A is given by xI - 9/n = 520 - 1333/20 520 - 67.7

4 152.3.



I
The shortest 95% confidence interval can be computed from (7).

Since w.o5 - 3.55 in this case, the Interval is (520 -, 520)

- (283, 520).

(iII) In (ii) we saw that the best estimate for 0 is given by

* - 1333. iTom (5) and (6), best one and two-sided 95% confidence inter-

vals for 0 are given by

( 24l000 W) (~24000 0 (831, W~

and

( 241000 24000200 400 33

respectively.

Remark: The tolerance interval in (2) can also be interpreted as

follows: .we are 95% confident of the assertion that all items survive

:! 2B3 hours.
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Ap.pendix JA

The mterial in Section 1 of Chapter 3 dealing with point and

Interval estimates for the mean life b is gth iivn ndke-n:

3. Epstein and X. Sibel, ' ome tests based on the f irst r
(x.odered ober rvatioc drawn from an exponential distribution "Stanford University Technical R eport No.o 6, Wayne University

Technical Report h. 1, March 1.952

and
1". Epstein and M. Sobel, "life Testing " Journal of the

i i rlcn tatisticas. Associatior. !!: Z6502, 1953.

~ Proof of the Theorems in Chapter 3, Section I

J1 order to show thbrt AN as given by (7) is the maxim=m like-

lihw d , stimste ! m write duivm the p.d.f. of the first r out of n

14 ordered obtervationsx X% x,,n -ft n x" Thi.• s is g iv e by :

#I~i nl] 2
1e

TA

1n 2,n:- xr,n

in the :n-replacement case and

f (x )( 7 nx r/ -n~r Tr/1. f( ':l~~~n' XS,nl ... Irn "(:J r
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in the replacement case. It is very easy to verify that the maxima of

f occurs at S -T/r and this proes (1).

The sufficiency of the estimate can be verified at once by using

a result in Cradr P.. since f(zl,n X2ns "'r, can be

factored as

f(x np X2n' 0..., rn 0) = g(8  n o) h(xl1n .. , ... D Xra)

where

T h(xl, x2,n, ... , ) - 1 if 0 4 Xl - ... x . co

= 0 otherwise.

We next ,,how tha the p.d.f. of --, is given by (6). To do
11A

this we introduce r Dew random variables defined as

W e nxsh and t, .( n - .I + o ) (x, x.e), by ( r

in the non-replacement case and

yl 0 '01l and -Vi 0 '(x' t1 ) 2 -: t r

in the replacement case. We can now state the following lean.

Lam: The random variables Yi,n defined above are mutually

independent with comon p.d.f. 0 x > 0

Proof: In both the replacement and non-replcement case the Joint

p.d.f f(x 1 ,1 j X2 ,n *"' Xrn) becomes

: ! - Y,19

g(y 1 , Y2, a 'rn') s1 #0re.,

1., 2p *..

r ~nd clearly the lea is established.
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,n"

Since the characteristic function of the p.d.f. 0 J/ 2 2 0 is given

by 0 -(t) (1 - ite) 1  it follows at once from the independence proved

in the lenu that

r
IIti-I

From the uniqueness tneorem for characteristic functions one gets by

inversion that the p.d.f. of or0 is given by (6):

1 ,r (6) fr(y) (pr r: y

_O elsewhere.

To coplete the proof of the theorem in Section 1 we show that

GrA is unbiased, efficient, and minimm variance.' r n

Unbiasedness is iu~dlabe, since

loeto nE ( j Yi/r) - rO/r . o.

For efficiency and minim= variance let us cowute the Craw-ho

, lower bound

n~ ~i~~LL Ubwere f C a.

with C - ~ r in the non-replacemint case andI C - rin the re-

placemutcase. ,,Thus log f log C r log 9 T!O.



log f1-r- + ..

Thus

r 2
2

4 2 2 rT r r

r -21 g2 ( 2 /r + e -f

Hence the Craznr-3ao lower bound is 9 2 /r.

But Var 0 ar nd since the assumptions needed

for the derivation of Cramer-Rao lower bound are clearly mt in the present
A

problem, 9 r~n is minimum variance and efficient since any other estimate

, has variance at least equal to 92/r. Thus the theorem in Section 1 is

coMletely established

Remark: It is of interest to note that while is "'best" among

all unbiased estimators, it is not "best" or "admissible" if one uses

other criteria. Using the .wnguage of decision theory, let us consider

the loss function

L (A, a ) -

where 9 is the true but unknown value we are trying to estimate and

where a is our estimate of 0 based on knowing the fbit r failure

times. We would like to choose the estimate a In such a way that

B, W(o, a)] is made as small as possible in the miuizax sense. It an

be verified readily from results in Chapter 11 of Blackwell and @t-shicks
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book, %%*ery of Gems and Statistial Decisics," that the best choice

for a is given byr

r + 1 "r$' + "

If the estlte -.a is used then

r*(e, '1 )
I. 1

wR r-here" if In used as the estiate Of 0, then

ZOL(0, 0) r

r .

and one ai..ys gets au er expected loss by using the estlmate 0

A rather than 19. Stated in the laqgW49s of decision theory, 0 is an
*"admissible mi- ,,x" estimte for the above losefn cton, wile I is

not admtssble-. Ban Is a aser one does better u the "based"
r "4estiate rather than the "unblased" estimate a.

We have seen that a 100(l - .,) percent ove sided coatIdence Inter.-

val for the quantile 3c, where xp Is the solntion to Pr(X a xp) - p

(i.e., zCS a ) log in given by

A 1

2Lrnlo D O



and that this '114 s the tolerance statemmsnt that we can be 100(1 -IL)

percent confidant of the assertion that the fraction of ite= erviving

The proof of this assertion is now given. We can be 100(1 .oL) percent
confident of the assertion that (r 4. xy e. OD ). But

PrlX T ) Z Prlx It zp) - p. Combinin th last tw statownts e co..
say that we are 100(1 - ) percent confident that -tbe fraction of item

surviving T tim units is a p. And this s wat we vented to prove.

ho~ndix 3D

It Is Ineetn ocoqere the material in Section 1 and Section 2

of Chapter 3 In the replacement case We assume that one starts the life

test at time to . 0 with n items and replaces failed item at oce by

new Item. In the situation treated in Section ', the life test is con-

tinued until a pwescribed nmber, r, of failwes have occure.d and am

stops testing at the random tim xr (inesswed from the beginning of

t.m). The total life observed up to and Incding xr n is the random

variable I n 1 , n Section 2, the life test Is termimated at a

preassigned tim t* and the number of failwes r that oco'r is a

random variable. T. total life observed is preassigned end given byr

T* w nt*. To sm up: in Section 1, the number of failures is fixed in ad-

vance and it is the waiting tim (and hoe total life) ntil the r 'th

asilwe which is random; in Section -2 , te tim (and bence total lfe)

allotted to the life test is fixed in ad e and it is the of

observed failures that is random.



U Point estimtion of B in the case here the number of f&Uawlms,
r., is fixed in advance, is very simle. The estiartor '8n a x1rn./r

= Tr/r is mong other things a ex/m likelihood w unbi est tor

of 0. However in the case vhere t* is fixed as in Section 2,

nt*/r - T*/r is & mxiim lIkel"iood estimat of 9, but it Is brlaed

(and In fa:cmaningless vhen r = 0). As a matter of fact It can be
Il proved that no unbiased ostimsto of 0 exists in this case. If ve

know aprtori that nt * To > 0, then an almost unbiased estimator for

I0 .is given by

1te T

' This arises'from the fact that

S T*)./

~since

'(T)r T /o

I - ~ T*/Oj

In an case, we can find a point estimte of 0 by solvIAS the equation

@*'a. [1 T/9 inumrically.

I When one is dealing vith confidence interval estimetion, the

- itustions in Section1 and 2 o ar as follows:
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-_ Fxed r. redom Tr  Fied T*j andom rj- ______

00 2 /

1121

*2 23 r dr/ K ,,(2r+2) /

IK 2

It is very interesting to see that there Is a striking similarity even

though the two situations are radically different. It is curious that

only the degrees of freedom for X need to be changed as indicated above

when one goes from the sitition in Section 1 to the situation in Section 2.

ReAmrk: It is interesting to note that in the case where T* Is

/,as an alpproxinate tw sided 100(1 - c.) percent confidence interval.

2TA* pni 31

We should lke to verify that eqations (16) and (17) in Chapter 3,

Section 2, ERemk 7 generate 100(1 -aL) percent one sided confidence

intervals vhen. data arise from a truncated replacement procedure

an(c t) Let us first consider the cue where ro a 1. In this

came if no failures occur by tim t*, we stop life testing and accrd-

Ing to (16) give t*P'0, ) as the one-sided 100(1 - 4) percent cm-

fidence interval. If, hobwever, a falure occins at tim 4. t" we' ,



stop the Wie test aod according to (17) give O(a---- ) the

one..s1de6 100(1 - .) percent confidence interval. We to verity

that this intrue. This mens that ve wish to prove that otw assertion

that6 iscontinedin the system. of confidence Intervals (16) and (17)

in correct with probability Z 1 - cL no tatter vhat B is. This is

particularly emay to do for the case r o - 1. In this cas one can

s8inuize the results in the follwing table.

r *3

Probability that confidence statments

}!If B >' , then no mtter what happens our assertion is correct.

fidence intera does not balnd d is equal to aS, and the poality

tht 0ourconfdence staent is corc is equl to 1 - *€ If r0 = 2,

the life test and give ( cc) as the cme sided 100(1 -I} percen
ifidece ihtn-nlo; tat, e o m fa e ocurae t (0, t*) sto torelt.

tesf i e I.., aos teide d (ntercet c f
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interval; if 2 failures occur at time C2 4 t* then the appropriate

100(1 - cc) percent confidence interval is given by ,. co ). Again

ve wish to prove that our system of confidence intervals is correct with

probability - 1 - Ot no matter what 0 ia. It can be verified that this

is so and the results can best be suwarized in the following table.

r =2

Probability that confidence statenenta
aValue Of 0 based on (16) and (,17) are .csorract

i O 2nt*i

0 21

;2)
4

" -nt*/l

' 2n-* 1 a -ter
2a2)

2 t*

-2

If r o . 3, one gets

Probability that €o~ideice r.corits
value of a bauned on Q0 6and V'? Vr corr,'ct,

0 >. t 1

)Q(2)

Sit* 
-

4(



I

2nt* 0 4 2nt* 1-nt*/O, vhere

2 1-
e 2 -nt*/

4214)

.! ~~~~~ ~ ~ J w-ien ' e - ( e n ' e here

2ft* 2nt

+~ 2 "  ~ '

2 2 1-+ nt* e-nt*/@ ,,

For general r, one gets

Probability that confidence state ents
Value of 6 based on nd) n ( re) correct

1-i

2n, tk-i +r-

OD t*

X~r 0 )
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Appendix 3

In Chapter III# Section 3, we dealt with life teat sitations

in which n items are placed on test, where testing is discontinued

i after a fixed time t* has elapsed, and where it*= which fail are not

replaced. In the first part of this section we gave estimstion procedures

I which depended only on r., the observed nuber of item failing in [OP t3,*

andnot on . - 2 - -r : t-, the actual failure tim-. bbre

precisely, we gave non-parametric one and two sided confidence Intervals

for the probability of surviving for a length of time t*, and In the

special case where the underlying distribution in exponential we were able

to translate these intervals into confidence statements about the man

life 0.

Since the sufficient statistic for ast muting * in this problem

is given by the pair (r, T(t*))a +j% (a - r)t*) we kww that we

can make better estilutes and better confidence statements about 0, if

we use not only r but also T(t*). To carry this out in p tice, how-

ever, Is not eay since the c.d.f, of T(t*) is expressIble on4 In a

____ series of mazV terms. The c.d.f. is given in 8. Tabda and 8 . Sia

"Statistical Anlysis of Life of Vacuum Tubes," itachi Review, pp. 143-

154, July, 195 4. See particularly page 153. The c.d.f. Is Liven by

equation 2.6.16 In the paper. Thus one is virtually forod to use appozi-

mste confidence intervals and to use a certain awunt of heuristic reason-

Ing.

One approach to the problem of finding approximte confidence

- intervals is given In the opoper by Takda and izmda to which ve have
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Just referred. EaentallyR their idea isas follovse If ue place n

items on test and truncate life testing at 'time t', we can treat

T(t*) -' r + (- r)t* as the sum X wl, where the X a re

identically and independently distribute ano variables, eachi poesses-

ing the c.d.f.

S ) - -ea / , t -t*

ITakada and Shiiada apply the central limit theorem to obtain an approxi-

ntion to the c.d.f. of T(t*) by the normal distribution. From this

approximation they obtain appropriate confidence limits for 0. They

claim that this approximation is a very good one and give a table which

!~1 $~- - tftes, oezaulef.-tbat--f n O n t*70 -n.03, then an error
of 5% is rde. TheYfurther state that if n Z 30, and t*/OQ Z.

or n Z 50 and t*/B L .05 then the orrr ssoocated with the-approxi-

nation is less than 3$.

We have given another approximation In equations (17) and (18)

of Chapter 3- These formul are certainly excellent tpproxi ations for

n lUkeg and even for small n, they should be quite good. There are

a number of reasons why we believe that thU statement Is correct. Amng

these are:

(1) If t*/e is mall, then the number of failures will be smell

and the non-replacement case become virual.4 a replacemt ease. One

can than act as if we were observing a Pbissas process with rate .

V for a ength of tim (t);

- 4
. I
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S .But it 'i readily verified that

-2-

low Rence

2 1 -2

eAt*

f itAs another way of estimting; , we note that

Hence the statistic r/n is aiu, unblased. estimate of 1 -

and thus an estimete of A is given by

" - lon

A
As was the case vith A, A Is also blased for finite n. Soever as

n -- + 43D -P-- A also. zet us now coute the esyqitotic varlaw of

. It cn be shown that as n -- 0 %

2 V nu n At* ft e t
o

C - n . )- (t.) 2  2- " ; (,. 2

n(t-))
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Let us now cpute, the ratio •!IOly It is esy to VWify tiat

2 2 (1-. 2 "

ExKP ing the Unertor# we let

t*)2 a- At*. 2 (*)J

And expaing the denominator we get

(1- e At ' )2 - (kt) 2  1. - At* + (kt*) 2) 

11-

Neleting hitr order ter=,, O'S2/ 2beom

1 i -At* + ...

t " 112

It is interesting that the ratio'is close to ow, (n.e., A is

walso~t as efficient as ) particularly If Ae t" is 6 j,+ Indeed, it

U j, it Is readily verified that 2rAO~ ~ Altbou& h Vat

we h w jut done Is for point estizates, clearly siLlar results wl l bold

for, oonfidenoe Intervals. Also, It Is trivially noted that althog we were

discussing est iatioc of A, the conclusioms obviously aply to the \

rter A as well. The upshot of the preceding discussion

is that, in case the underlying d1stributim is expmntlal, thben the aon-

fidence intervals (5) and (6) given in section 3, which depend only on

the nmuber of failures r in (0., t*), are almost as short as those based

on using both r and T(t*).

I
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Amendix 3G

It is inteesting to note that if lite testing is terminated not

after a preassigned time t*, but after a preassigned total life TO,

then the problem becomes one of =10m appropriate estimates. of A or

a - 1/ when observing a Ptisson process having ret. - 1/0 for

a length of time T*. Thus the considerations in Section 9 and Appendix

33 can be used, the on .y difference being that ye replace nt* in Sec-

tion 2 by TO. We now state a nnber of results without proof.

Suppose that life testing stops after a total life TO has been

observed. If the underlying distribution is exponential with mean life B,

then the nmber of observed failures, r, is a Poisson random variable

distributed with the probability law

TO
*Pr(r - ki . p(k; TO /'iT k YL S 0, 12

Using precisely the sa rgusants asin Section 2, it am be asserted

that if r nuber of iteus hich fail in (0, Tw), then a one-sided

100(1 - .) percent confidence interval for B is given by

2 TO-2/
and a two-sided 100(1- *a.) percent confidence interval for B Is Liven by

2 TO 2 TO

) (2r +2) 2r

iNote that for r 0, only on-sided eonfldene lisiLs 8 n".



fT
a

Another kind of sitvtion is where data become available as the

result of the following rule of action: Reject if r0  failures occur

before total life T* bhas been used up; accept-if fewer than r°  fail-

ure occur by the time one has observed a total life of T* (it is assumed

that r. and T* are preassigned). In the event that one rejects, ex-

~ t perimentation stops at T(tL. ), the total life observed up to and includ-
0

Ing Tr  the r'th failure time. In the event that one accepts the

total life observed will be TI.

Using precisely the sam considerations as in Section 2 and in

Appendix 39., we can assert that if the number of observed failures in

e(0, T )  is 0 e k A r0  " T then a one-spded 100(l - ) percent con-

0

fdence nie nterval is given by

. When r ,,ro, i.e., if Tkl, T* then the ,approprialte 100(i - L.)

: ;. 0

! percent confidence Interval is g$in by

2T(r)

.Sic results an be conjectured for two sided 100(1 - oLQ percent
confidence Intervals. The results ar

OD i® k 0 2.

22 Ti2 2k 2) (2k
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TABI 4(s)
Valua of - I - Tor a .01

1 4. (r+) -lb2+,,2n-2r)

U--
i ' .... 'i .... ....2 6 7 8 -- "---9

1 .0100

2. .looo .0o50

3 .2158 .o588 .0033
14 .3162 .1468 .o42o .0025

5 .3981 .2220 .1o6 .0327 .0020

6 .4640 .294.5 .1731 .0814 .0268 .oo17

7 .5181 .3567 .2362 .11422 .0708 .02-26 .0014

8 5622 A4098 -2933 .1981 .1210 .o6o8 .0197 .0013

9 .5996 .4561 -3435 .2500 .1709, .1052 .0534 .0173 .0011

10 .6309 .-496 .3883 .2971 .2182 .1503 .0932 X0o475 .0155 .0OO

11 .6575 .5302 .-48O .3396 .2622 .1938 .1344 .0836 .0428 .0141

12 .681t .5607 .4627 .3775 .3025 .2349 .1747 .1215 .0759 .0390

13 70.16 1 .937 . $-195 -33 90 .2730 .2128 .1589 .i108 .0694

14 .7198 .6109 .5215 .4435 -3724 .3080 .24W, .1947 .1457 .ioi8

15 .7357 .6323 .5469 .4717 .029. .34ao .2822 .2288 .1793 .1345

16 .7498 ,6510 .5693 .-4969 .4309 .3701 .3134 .2607 .2117 .1663

. 17 ,7627 .6683 .5903 .5201 .14569 .3976 .31423 .2907 .2421 .1970

18 .7742 .6838 .6086 .5.19 .14803 .14226 .3691 .3187 -.2709 2261

19 .78W .6982 .6257 .5610 .5017 .•4459 .3937 .3W .2979 .2538

20 .7943 o7111 .6k17 .5790 .5220 .468 2 .14175 .3689 .3234 .2799

25 .8317 .7624 .7042 .6509 .6017 .5,62 .5117 .A697 .14294 3900
30 .8576 .7985 .7480 .7025 .6596 .6194 .5803 ..5430 .5077 .-730

40 .8913 48453 .8058 -7698 .7360 .7042, .6732 .61434 .6141 86

50 .9121 .874-4 .8h22 .8127 .7853 .7583 .7326 .7079 .6838 .56
75 .9404 .9147 8927 .8722 .8529 .8342 .8166 .7991 .7822

100 .9550 .9356 .9187 .903o .8883 .8742 .8605 .471 .8332 .8212

150 .9697 .9566 .9452 .9346 .9246 .9151 .9056 .. ,965 .8878 .8788

i o0 .9772 .9672 .9,86 .9506 .9430 .9358 .9286 .9216 .9150 .9081

300 .9847 .9780 .9722 .9668 .9617 .9569 .9520 -9473 .91428 .9382

400 .9885 .9835 ,9791 .9751 .,9712 .9675 .9639 .9603 .9570 .9535

500 .9908 .9%8 .9833 .98 .9770 .9740 .97,11 .9683 965 .9627



i 3. 1 ;

TABLE 4(a) - cont.

Values of for g ,.01
w1+ ., F(2r2,2n-2r)

10 1 12 13 14 15 16 .17 18, 19 20

11 .0009
12 ..o128 0008

13 -0358 .0118 .O08
1, .0640 .0331 .0109 .0007
15 .094 .0594 .0307 .0102 .007
16 .1249 .0878 .0554 .0287 085 .0006'
17 o1553 .1168 :0821 .0519 .0269 .0076 .0006

1 8 .1842 .1453 .1096 .0772 ".04W .0253 -oo69 .0006

19 .2126 .1733 Ai367 .1033 .0727 .0460 .0237 .0063 .0005
20 .2387 .2000 .1634 .1292 0.7 6 .0688 .0436 M0223 tO56 QWoo5

25 .3520 .3165 .2817 .2479 .2155 .1846 .1553 .1276 ,1007 .0765 .041

30 .4383 .4056 .3738 .3436 .3131 .283; .2555 .2281 .2013 .1757 .1509
140 .5592 .5313 .5059 .14802 ,14511 .1290 .14052 .3814. ..3580 334i4 .3122
50 .6372 .6146 .5923 .5700 .589 .5274 .5o66 .4861 .4657 .4457 .4261
75 -7494 .7335 •7173 .7020 .6868 .6713. .6558 .6408 .6258 .6112 .5970

100 .8082 ,7958 .784o .7720 .7598 .7478 .7362 .7247 .7132 .7019 .6906
150 .8674 .8617 .8531 .8w .8368 .8283 .8201 .8120 .80W3 .7967 .7888
200 .9017 .8953 ,8888 .8825 .8762 .877Q .8635 .8575 .8515 .8.57 .8397
3O .9339 •9295 •9254 .9211 .9165 .9123 .9082 .9041 .9001 .8962 .8920
400 .9502 .9469 -9,437 .9405 .937o .9338 .9307 .9277 .9246 .9216 .9185
500 .9601 .9575 .9549 .9523 •9496 .9470 .9445 .9420 .9396 .9372 .9347

Cl

ra



Ya~is of TAXLE 4(b O).0

1 + (-r+ ') (2, ,,

0 o 6 7 8 9

2 .2937 u~2!5k

3 .3686 .1353 .0170
4 4728 .24688 .0977 .0127

.5195 .3425 .1894 .0765 .0102

6 .6o67 A18l .2714 1.531 o6.9 .0085

- .6518 .-4792 .34U .2252 .1288 .046 .00'73

8 6879 .5,95 .4000 2894 .1928 .lU .o4( .0064

.717.1 .5706 .14502 .3448 .2513 .1689 ,0977 .A411 .0057

10 4413 :6057 .4932 ;3933 .3038 2226 .1499 .0873 .0397 .0051

1i. 47618 .6353 .5300 .14357 -3,-00 -2710 .1998 -1389 .0787 .0333

12 -7792 .6611 o5618 -4727 .3912 -3156 .245. .1608 o1230 ,0719

13 -7541 .6834 45893 C5051 -4276 .3552 .2874 .2239 .1656 .126

14 '',,8074 .7035 -6144 *5!340 .4598' 43906 .3253 .2610 p2058 a1529

15 82-88 ,7P O9 46369 .5597 .89 A14223 .3596 .3003 .2140 .1899

16 ,29,4 .7360 -6557 .5835 .5161 .4,512 -3915 .3333 42787 o2266

17 ,8383 47498 .6739- 6045 .5394 785 .AM0 .3644 -3106 .2597

18 .8%67 -7623 687 .6229' "5611 O019 .4J.9 32 .34W7 .2913

], -8%13 .7739 ,ro4q. i6kio 15 814, -52k0 tP705. .4178 ;.3679 ..3205

20 .8610 .7838 .7177 .6559 -5993 ,51147 A.1926 A4422 ,3941 .3470

25 8872 48236 ,,7692 ,7180 .6709 .625o .58o7 .5383 o14959 ,4558

30 ,9050 .8512 .8046 .7615 .7200 o6812 ,6434 .6059 .5705 .5344

40 -9279 .8867 .8510 -8174 4755 °7553 .7248 .6964 .,684k o6394

50 . 941.8 .9087 ,8794 8523 .8260 o8013 .777C .753]L .-7300 ,7071

75 .9608 .-938 .9184 .8999 .8822 78614 .8481 o8321 ,8156 .8003

41oo .9705 ,9534 .9385 ,9244 .9107 .8977 .8850 .8727 ,8601 .883

150 .9802 .9688 .9586 .91491 .91401 .9313 .9227 .9140 .9CY37 .8974

200 .9851 .9765 .9688 .961.6 .9548 .9482 .9417 -9352 .9290 .9226

300 ,-9901 -9843 .9791 .9743 -9697 .9653 .9609 .9567 oM .94ft

400 .9925 .-9W2 9843 .9807 -9772 .9739 .9706 .9674 .9643 .961u

50 9940 .9906 .9874-.9%5 .9818 .9791 .9765 .9739 9714 .9688



TA3LI Ji(b) C- t

Values of 1 for a .05I. 1 + (~~?r(2r+2,2n-2r)

10 . 12 13. . 5 16 17 18 19 20

11 .0046
12 .0301. =4163

13 .0658 .0281 .0039

11 .1o41 .o611 .026o .0036

15 .1418 .o965 .o568 .o22 .oo34

16 .1779 .1407 .0903 .0531 .0227 .0032

17 .21l9 .1662 .1239 ,o86 ,499 .0213 .0030

18 .241 .1989 .1563 .1163 .0797 .0492 .0201 .0028
19 .2738 .2296 .1876 .1 73 .1099 .0753 .0 4 70190 .0027

: 20 .3021 .286 .2170 • 1773 .1394 -.1037 .0712 .0422 .0181 .-0026

" 25 .4166 •.3792 .3413 •.3053 .27,03 .2354 .2021 .1707 .1396 .1099 ,0822

, 30 .NU o466 •4334 .4028 .3695 • 3390 .3085 • 2790 • 2497 .2209 ,. 1931

40 .6132 .5859 .5595 .5339 .5075 .4822 .14572 .-4329 .4083 .3846 .3615

50 .6840 .6627 .6409 .6182 .5976 .5763 •5556 .53149 .5143 .4943 '47145

. 75 .7842 .7694 .7542 .7383 .7237 .7086 .6938 .6792 •617 .6503 .6360

100 .8361 .82145 .812 .8014 .7898 .7784 .7672 .7558 .7113 .7330 .7M4

150' .8893 .8817 .8737 .8659 .8576 .849 .8424 .8349 .8272 .8196 .8121

200 .9166 .9106 .9o5 .8987 .8925 .8866 .8809 .8751 .869. .8638 .8580

_,oo .9",12 .9k4OO .9359 .9319 .9280 .9239 .9199 .9160 .9121 .9083 .9043

400 .958 .9548 .9517 .917 .9058 .9427 .9397 .9367 .9337 .9309 .9280

500 .966 .9638 .9613 .9589 .956 .95%1 .9516 .9192 .9469 .946 .9423

V.



TABIZ I(c)

Values of for a z.10
2rr+12-2)

0 1 2 3 5 6 7 8 ,

.1000
2 3165 .0513
3 -4644 .1957 .0345

.626 .3205 .1426 .0260o5 .6313 -4158 .2469i ,i24 .o2o9
6 i6810 .I892 •3331 .2011 .0926 .0174

7 ...7194 • 5474 • 4039 .2786 .1695 • 0787 • 0149
8 • 7498 •5942 • 4619 • 344 •2395 , 1450 ,0686 .0131

S!9 .7745 .6319 .5102 .4011 .3012 ,2100 .1295 .0608 • 0116

10 .7943 .662 .95502 .-W7 .3%0 .2671 .1873 .1159 .o54 .olo5

u1 .8112 .6897 .5&148 .4890 .4 000 3171 20 .1695 .1047 o0"
12 .8253 7124 66 .5p45- .44of3 .3611 .2881 .2189 .1%1 .9955
13 .8376 .7326 .6403 .5556 .4762 .Aoo7 .3303 .2639 .2002 .1418
14 .8485 .7497 .6623 .5826 .5076 .4355 .3686 -3013 .2427 .18A2

15 .8576 .7642 .6831 .6073 .5366 .1673 .o26 .3413 .2820 .2256
16 .8658 .7780 .7000 ,6286 .5607 ,4959 ,A34 .3744 .3176 .2632
17 .8731 .7897 ,7163 .6481 .5830 .5208 .4623 .4058 .3497 .2974

.8 8798 .8004 -7303 '.6661 .6034 .51435 .14878 .14331 .3804 .3285
19 .8858 .81o1 .7130 .6814 .622k, .6 .5106 . 587 .4071 .3584
20 .8913 .8190 .7547 .6956 .6390 .5841 .5319 .4815 .4324 .3 86
25 .9121 .8531 .80o4 .7516 .7054 .6596 .6160 .5734 -5313 .49U

30 .9262 .8765 .8322 .7906 .7508 .7114 .6743 .6381 .6o2 .5673
4o .9"1 .9060 .8723 .8o4 .8097 .779k .7510 .7232 .6953 .6685
50 .9549 .9245 .8972 .8713 .8465 .8215 .7984 .7757 .7530 .7311
75 .9697 .9491 .9305 .9129 .8960 .8790 .8629 .8473 .8317 .8168

100 .9772 .9617 .9477 9344 .9216 .9086 .8967 .8848 .8728 .8613
* 150 .98147 .9743 .9649 .9559 .91473 .9386 .9305 .9225 .91143 .9065

200 .9885 .9807 .9735 .9669 .960 .9538 .9477 .9416 .93"5 .9295
300 .9924 .9871 .9823 .9779 .9735 .9691 .965o .961o .9%8 .928
1o .9(93 .9903 .9867 .9834 .9801 .9766 .9737 .9706 .9675 .9645K 500 .9954 .9922 .9893 .9867 .9840 .9814 .9789 .9764 .9739 .9715



TAKE A(c) - cont.

vsalm of . for a* o .10
1 + (=.) F(2r+2,2n-2r)

10 U 12 13 14 15 16 17 8 19

/ .1

11 .0095

1 .452.0087

13 .0879 .017 .0081
14 .131 .0814 .o386 .oo75

.5 .1 -M .37% ,36 0 70
16 .2102 .1605 U 436 W09 •0337 .0066

17 .260 .1969 .5W3 .168 .0667 .o17 .362

18 .27089 .232 .1856 .1133 .6208 .o0628 .029 .o08

19 .3092 .2628 .2181 .75o .1337 .2951 .0595 .0283 .o 065

125 ,.8 .8319 .370 .311 .-304 .293 .23o2 .1963 .1631 .1310 .1001

30 .53g3 .4982 .8838 . .323 . 6 39 -3373 .3o68 .2768 .272 .278

20 .6 23 .6137 .873 .16 .,4367 .5112 .48 .603 .8357 .4174 .3877

0 .7o8 .6863 .,6646 .9713 .6234 .60W .596 .5587 .839 .9181 .6984

100 .84 .837'8 .8265 .8155 .8o47 .7932 .78B o,"706 .7"g .74%6 .7378

150 .89& , .8W .8830 .87" .8683 .86o5 .8528 .845 .8376 .83ok. .8Me

20 .9234, .9173 .9117 .9o6l .9o6 6 .888 , .8831. .8774. .87.17 .8662

, 3oo .9kW .94W .00,9 .9371 .9334 -9295 -,9255 .9217 .9179- .g9141 .9.*

km .9614 .9584 .9554 .9526 .5498 -96 .9438 .9109 .9380 9352 .93214

'loo .9690 .9666 .96k2 .9619 .9597 .9573 .9549 .9326 .9503 .,9kW80 957



TANSZ l(d)
Values of or a- .25
Value. 1 + -- (2r+22,n-zir)I ... .. < ,_u_ _ _ _ _ __•_ _ _ ,_ __T_

0 1 2 3 7 9

1 .2500
2 3000 .13110
3 .6303 .3268 .0915
1 07o, .11559 .2W2 .069

.7576 .5 oI3597 .193 .- :-
6 1 0 937 .6lU2 .4469 .796 .614.3 .W91

7 .8206 .6593 .61233 .3788 .232 1382 0603

12 .87o2 .721 .6983 .6, .3269 .3629 .290 .263 .1 56

3 .8990 .7265.708 -63 .5590 .2925 .193 3366 .2676 .1990
1 .903 .8186 .739 .5628 .5882 .5172 165 .3783 .3120 .2751U .8819 .73028 .7112579 .631 6 .1016 .31789 .1153 .3517 .8

16 .970 .8108 .7698 .19 .639 .5723 6.5093 -.277 .3877 .386

17 916 .81196 .782 .7172 .6599 .595 .535 .1177, 36 195 .3636"
18 .9o57 .857 .7937 .732 .6731 .6161 .58 .5o35 ,111189 .39117
19 .9295 .86117 .8039 .78514 .68 .632 .75803 .5 .3755 .237
20 .9328 .871 ,8132 .7013 .7039 .6510 .6000 .51-88 .3991 508
75 .91P19 .8961 .825 .8036 .7599 .7179 .678 .6331 .593 .5525

30 .9%18 -9130 .8T33 -835" -7985 .7622 .7262 .6908 .6560 .6219
40 .9659 .9340 .90o1 .875" .875 8195 .79211 .765 + .7390 .7128

5. .9726 .69 .9m .8998 .8771 .8517 .8327 .A11 .7893 .7679

75 .9817 .9643 .994 .9326 .9173 .9M25 .8877 .8730 .8811 .8AO

100 .9862 .9731 .9609 .9191 -9375 .9263 .9151 .9039 .8M .8818
15C .9908 .9819 .9737 .9658 .9580 .. -951 .929 .9353 .ge78 .9201

200 .9930 .98 .980 ..973 .968 .9627 .-9570 .9513 .956 .9o

300 .9951 .9909 .9868 .982 --9788 .9750 .9712 .9674 .9635 .9%08
410 .9965 .9932 .9901 .9871 .9811 .9812 .9783 .97"5 .9M2 .9697
500 .9972 .99 .9 .996 -9873 .9850 .9826 .9803 .9780 .9758



TAMI 4(d1) o.Ialum of for a .25

io 1. 12 13 14 15 16 17 18 19 20

3. .o2 8

12 .0801 .0237

13 .1342 .0742 .0219
14 I.zS .LIMo .o689 .0203

1 15 .2302 .1721 .165 .0613 .0190

16 .2706 .2151 .1563 .1091 .0602 .0178
17 ,3o9 ,255 .2019 .1515 .1026 .0567 .0168

18 .31119 .2912 .24M0 .1913 .11129 .0968 .0OM .0158

19 .,T371 .32 1 .2792 .81 .1817 .1351 ,0916 .0507 ,0150
20 .1.15 .3538 .3074 .257n .2162 .1715 .1282 .0870 ,.2 .013

.25 .5129 .730 .335 .309 .3571 .3181 .2002 -.219 .2 .1714 .1362

30 .51M8 .5557 45218 .Af88 .11,7 .41232 .3901 .3582 .3266 .2957 .2622

l4o .6W6 .6605 .635o .6097 .58115 .5589 .5336 .5085 .11837 .11591 .13118

50 -7405 .7253 .706 .68112 .66111 A6133 .6927 .6o22 .5819 .5W3. .5111

75 .8295 .8151 .801U .7873 .7736 .7Y' .7.53 .7313 .7168 .7028 .6889
100 .87O7 .897 .8,191 .838,5 ..826 .8172 .806. .7957 .7850 .TT" ,  .7636
150 .9129 .901 .8982 .8910 .88 0 .8766 .8692 .8619 .8%6 .8473 .8ko..

f 200 .9343 .9287 . .9232. .9178 .911A .9068 .9012 j8957 .8902 .887 .8792

300 9M5 4952 .9015 .94418 .91113 .937.6 .9337 .9300 .9262 YM12 .9188M
100oo .9669 .960 .9612 .9585 .958 ,9530 ,9501 ,9173 .9"5 .94117 -9389

500 .9734 .9712 .9689 .9667 .9616 .9623 .9600 .9"M7 .9"55 .9532 .91O

9$-



TABXZ(e) - cat.

Valms of 1 for am .0
1 + (±)F,(2r+2,2n-2r)

10 u 12 13 14 15 16 17 18 19. 2D

li

12 .1288 Ow56

13 -2016 .1266 .0521
lit .2572 .1866 .1171 .0182

15 .3062 .2392 -17117 .1096 .01.51

16 .34&'1 .2860 .2317 .1630 .1031 .0424

41 17 .3%65 .-3289 .2681 .2123 .15385 .0973 .04W0

18 .1186 .3638 .3094 .2-538 .199S5 -1456 (09Wl .0379

19 .1.i90 .3976 .34"5 A?938 .2410 1804 .1382 .0874 .0360

20 A4757 -d.266 .3772 .3268 .2797 .2277 .18)3 .1316 .0832 .0342

25 .5791 -%W10 -. 00 .4"99 .1.207 .3799 .34W2 .2935 .2635 .2239 -.1834
30 .64%8 .6w.y( .3W6 .51k.95 .5164 .1.836 .4511 .4186 .3838 .351A .3183

40 .73,6 .7109 .6%61 .6612 .6363 -6111 45870 .5622 -5375 .513M .*M8

*50 .7882 .768k .7485 .72B6 .7085 .6888 .6690 .6492 .6293 .6095 .896

75 .8585 .8452 .8320 .8186 .8053 .7921 -T789 .7657 .7N24 -739.1 -72W9

100 .8937 .8838 .8738 .8638 .8538 .81.39 .831.0 .824o .8141 .8041 -7941

150 .9291 .92216 .9158 .9091 .902 4 .8W5 .88W2 .8826 .87,9 .8693 .M%2

* 200 .9968 .9k18 *9368 .9318 .9268 .9218 .9168 g911 .9069 .9019 .8969

300 .9645 .9612 .9579 .95k5 .9N12 .9k79 .945 .91#12 .9379 .93M6 .%32

400 -973h1 .9709 .9684 -9659 .9634 .9609 .9581 .9559 -9534 m90 .908

500 .9787 o9767 .9747 *9727 .9707 .9687 .9667 996k7 .9627 .9607 .98



Nfuerical Risque- for Tables it(&) througbiti(s).

20 iterm drmm at reada from a lot and placed on life test.

The test runs for 100 hours. ft&p~ose that no failures occur, then we

can be:

(a) 99% confident of the assertion that at least 79,A% of the item

in the lot survive 100 hours,

W(b) 95, confident of the assertion that at least 861% of the items

in the lot survive 00 hours,

(c) 90 confident of the assertion that at least 89.1% of the itme

in the lpt survive 100 hours,

(d) 7% confident of the assertion that at least 93.3% of the item

In the lot survive 100 hours,

(e) 50% confident'of the assertion that at least 96.6% of the Items

in the lot survive 100 hours.

' These are n=n paramtric statements.

~1



Values of A (for a - .01

jr 1000 5,000 10,oo.0000 -100,000 50.o 1,000,000

0 .9954 .9M17 .99954. .999 999 .9999 .99999

1 .99338 .99867 ,99933 .99987 .99993 .999987 .999993
2 .99162 .9932 99916 .99983 ,99992 •999983 .999992

3 ,98999 .99799 .99899 .9990 .99990 .990 ,999990
4 -9 .99767 .9988 .99977 .99988 .999977 ,MW

.5, .98696 .99738 .99869 .99974 .99987 .999974 .999987
6 .98-"9 .997W .998% .99971 .99985 .999971 .999983

7 .9 05 .99679 .99839 ,99968 .99984 .999968 .999984
8 .9827o .99651 .998e6 .99965 .99983 .999965 .999983
9 .98129 .99623 .99811 .99962 .99981 .999962 .999981

10 .97997 .o9596 .9P98 .99960 .99980 .999960 .999980I1 97863 .99369 .99784 .99957 .99978 .999957 .999978
12 M .97730 .99%2 .99771 .4 -9 .77 .999954 .999977
13, .97605 .99517 .90758 .99952 .99976 .999952 -999976

14 -0$'65 :.99M8 -997%41 .9991g9 .99974 .999949 .999974
15 .97334 .99"2 .993' .99946 .99973 .999946 .999973
16 .9T209 .9936 .99718 .999" .99972 .99994 .9999T7
1 -1 97085 o .9 U ,99705 .9941 .9m97 .999941 .999971

18 .96961 .99386 .99693 .99938 .99969 .9 9938 .999969

19 961 .9936), .99680 .99936 .99968 .999936 .999968

20 .96717 ,99336 .9961 .99993 99967 .999933 9067
"j ... -954,90 .99087 ,99543 .999o8 .9995. .999908 ,999954

40 .9318 .9W7 .9923 .998 .99942 .,99978 .999942
3 ! o .931.49 .98618 .993o8 .9986o .99931 .9996o .9M931

60 .91962 .98364 .9 8W .99736 .99918 .999836 .999918

TO .907 .98126 .966 .991 99 .99906 .. .99986
S8o .89695 .97897 .,89k6 .99789 .99,94 .999789 .g99o
:0 9o 88621 .97676 .98835 .99766 .99883 .9M766 .999883

ioo ,8S-.A8 .97488 .596726 ."95 .9^87 .999745 .999e74
200 .76730 .95267 .97628 .995m .962 .999M5 .999762
500 .1-.461 .89242. -91616 .98923 •99. j •996923 .999461



3.'rI. *A5(b) 1

Values of for 0 .05

1000 "M00 10.000 ,00000 100,M0> W,000 100,000

970 .9o' ..99970 .99994 .99997 .999994 .999997
%-. 7 .99905 .999"3 .99991 .99995 .99M99 .999995

2 .99371 .9987 99937 -99987 -99994 .999987 .999994

3 9926 .99845 o99922 .9998% .99992 .999984 .999992

.99087 .99817 -- 9990 -.99982 .99991 o99998e .999991

5 .98953 .99790 .9989^ .99979 .99989 .999979 .9999

6 .982 .99763 -.99W1 .99976 -99988 -999976 .999988

7 -98W .99737 ,9968 -9 0 4 ,99987 ,9W97 .999987

8 -99711 .998W- -99971 -99986 .999971 .99996

9 .9836 .9968 .99943 .99969 .99984 .999969 .M
10 .9832 .99 6 .9983o .9996 .99983 .999966 999 3
16 .9&83 .9965 .99817 -99963 .99986 .999963 .999976
12 .9" .69990 998# .99" 99974 999961 .99998D

16 097341 -9094- 993 -99958( -.99979 -9W958 999973

19 .9720 .g9 j °9976 .99956 997 .9999% '99me

10 .9761 9967 ..99738 .999% -9997 .9999% ,999971

30 '.95951 .99183 .997o .9999. .99995 -99996 l l M96-M
10 -94 - .9955 '994T .995 .999 4 9999 .999948

18 931 .99738 .&969 .9987 .99936 .9973 .99996
19 .97 .99498 -9720 .9989 .999725- .9999 .9999r25

70 .9176 973 .9913 .9992 -99913 .999A27 •99,913

8o .90397 .98052 .990~2r .99805 ,9990 .999918 .99990
30 .8933? .97832 .98925 99785 .99,e .9978 .9

00 .88&7 .9865 ,98819 -998z .9998 .99'i9 .999582
00 o77703 o98738 .97733 .99876 .9973 .9994 .999T73

., .ge439 .997k .98*9 99925 .999& 9

70 .917 -907 -993 -99. -9 3 9A - W;1

so _9039 193 4 9W ~ w 98r 990



Vat o13 . ... for au.10

51M0 0 10,000 50,000 10000 500,00 1,00010w.r ...... . c i
0 -99771 •.99954 .999 5 -99M •9999 .99o-91f

1 .%12. 99. 2 99 . 961 .99992 • .9,9 • 9',

9 9 .998 . 99947 .99989 9
3 9333 .99866 .99933 .99987 .99993 .999987

4, WW .9940 -9920 .999&' -99M9 .9999
99 69 .991 .9990 .99,81 .99991 . ,l .999
6.90 978 9994 .99978 .999 /9* 99999

7 .98 .99764 .99882 .99976 .99988 999976 .99998

8 .98676 .99734 .99867 .9M3 .99987 .999973 -99M67
9 .985W2 .99716 .99858 .99971 -99986 .999972 .919966

10 .98459 .99691 .9984e6. .99969 .9998&5 .9999619 .99M9511 .98329 .99666 .99834 .99968 .99983 .999 8 .999983I
12 .96205 .99642. .99823 .99966, .99982 .999966 .9999&,
13 .9k-8 - .99617 .99811 .99965 .99981 .999965 .999981
14 -97970 .99593 .99799 .99964 .99980 .999964 .999960

3 15 .97851 .99570 .99787 .99962 .99979 .9991-2 .999979
16 .97736 .99547 .99776 .99961 .99978 .999961 .99"978

41 .97621 29923 .99764 .9990 -99977 -999960 .999977
18 .9 750 .99501 .99752 .99958 .99975 99M8 -9993
19 .97401 M9179 .9971.0 -9995N .99974 .999957 .999974
20 .97296 .991458 .99729 .99956 • O 3 .999910 .999973
30 .96154 .99231 •9915 .99923' .99 .999923 .999,2
40 .95131 -99002 .99513 .99900 .99951 -. 999900 '.999951
50 .94010 .98798 .99399 -99880 .999k0 .99988.099k
60 .92937 .9W53 .99 .99856 .99930 .999856 .999!O30
70 .91878 .98342 .99188 .99834 .99919 .999834 .9

80 .90762 .98136 .9976 .99813 .99908 .999813 .9999W
90 .89.693 .97929 .98969 .-99793 .99897 .999793 .-9,8997

100 .88675 .97721 .98860 .99772 .998%6 .999 .999i3-
200 .78227 •95603 •97799 .99559 .99760 •9M59 .999780

500 .48201 .89591 .9479 .989w .9M79 .9989"8 .99"179



T.AM 5(d)
Values (if 1 for 1 2 .25

ro<o1000 oooo 10,000 50OO loo,oJw 00,000 1o000,000

0 99861 .99972- .99986 .9,W .9998 .999997 .999998
1 .99730 .99946 .99973 .99995 .99997 9999, .999997

2 .99 07 .99921 .99961 .9999 .99996 .999992 .999996
3 .99489 .9989 .99949 .99990 .99995 .999990 .999995

4 .99376 .99"85 .99938 .999(8 .9914 .999988 .999994

5 99057 .99851 .999oab .99985 .99993 .999985 .999993
6 .99143 .99828 .99914 9983 .99991 .999983 .999991

7 .99030 .99606 .99903 .99981 .99990 .99998 .999990
8 .986 .99784 .9.892 -99976 .99989 .999978 .999989

9 .98812 .99762 .99881 .99976 . 8999968
10 -98698 99-739 •99770 •999997 .9W97

1 .97t& .99716 .9985 .99972 .99986 .999972 .9k

3-12 .98147 .9962 .,997". .99963 -99905 - 99969 .9.9978

13 .9803,0- .99605 .9986 .99967 .99980 .999961 .999964
[7 .,99f3 .9968 .9983 ,.99965 -997 .9999o i .99983
18 .918 .06 .998175 .9996 .9998 .99996 .999978

16 •97718 .9-W3 09937 .99958 •99980 999 68 -999961

0 .9711 .995& .99i .9958 .99979 -9995 -999976

30 .97&22 .9963 .997b-. .99931 99 j .999956 .99W78-
190 -951738 .990%2 -997724 .99910 [997 995 .99775

20 .97148 .988 .99761 .9988 .99976 .99989 .99976
30 .9314459 .99&8 .991I.6 .99938 .99914 -999961 -999901
4 0 -9514439 .98141 .99514 .99847 .9991 .99541

80 .914418 -988 .991143 .9988 .999414 .999889 .99994

80 .91410 .98283 .99 J143 .99828 .99914 .99828 .9999.14

100 .891439 .97885 .98942 .99788 .99894 .999788 .999894

200 .79437 95885 .97942 .9958 .99794 .99958 -999794

00 .491434 .89884 -949 4,2 .998 .99494 .99898 .999k94

*1 I



Vlues f - for o..50

1 + (r+'.) 7 (2r+2,2n-2r)

1000 5m__0 _ 00000 50,000 1

.99931 .99986 .99993 -99999 .99999 -999999 .999999
1 M932 .99966 .- 98 99997 .99998 .999997 -99998

2 99733 -9997 .99973 .99995 .99997 -999995 -999997

3 .99633 .99927 99963 .99993 .99996 .999993 .999996
4 99533 -. 9997 .99953 .99991 .99995 .999991.999995

5 .99435 .99887 .99943 .99989 .99M .999989 .9
6 .99334 .99867 .99933 .99987 .99993 999987 .999993
7 .99234 .998147 -999123 .99985 .99992 .999985 .999992
8 . 991-& .99827 -99913 .99963 .99991 .999983 .999991

9 .99033 .99807 •99;903 •99961 99990 .999981 .999990
10 .98934 .99787 .99893 .99979 .99989 .999979 .999989
1.1 .98832 .99767 .Q9883 .99977 .99968 .999977 .999988

12 .98730 ,997147 .99873 .99975 .99987 .999975 .999987

13 .98630 .99728 .99663 .99973 .99986 .999973 .999986

S14 .98531 ,99708 .99853 .99971 .9998 .99971' .999985

15 .98432 .99687 .99843 .99969 99984 .999%g9 .999A
16 .98333 .99666 .99833 o99967 ,99983 .999907 .999983

17 .9823. .99646 .99823 .99965 .99982 .999965 .999982
1 .98135 .99627 .99814 .993 .99 999963 .99"981
19 .98036 .99607 .998o4 .99961 .99980 .999961 999980

20 .97936 .99587 .99793 .9€M9 .99979 •999959 .999979

30 .96937 .99386 ".99693 .99939 .99969 .999939 .999969
140 -95936 .99186 -.99593 .99919 -99959 999919 .999959

50 .914936 .98987 .99494 .99899 .9999 .999899 .9999149
60 .93935 .98788 99394 .99879 99939 999879 -99939
70 .92934 .96588 .99293 .99859 .99929 .999859 .999929
80 .9.1935 .98387 .99193 .99839 99919 .999e39 .999919
90 -,90936 .98186 .99094 .99819 .99909 .99K819 .999909

100 .89935 -97986 .98993 -99799 99899 .999799 .999899
"Or .7994R .95987 .97993 999 .99799 .999599 -999799

1.-,00 .149956 986 .94993 .98999 o99 .9999 .999499



iINI

Ji- -, -a'l 7xampLe for -T4a $x-

1000 items are drai. at random from a Sil ife text. ft

test runs for 100 hourr Suppose that 20 faitl ,# c then we can be:

(a) 99$ confident of the asaertion that &t least 96J of the

items in. the let tuu,-lve C O hour". ..

(b) 95- confide A' r.zi' '?zo v., tio at at least 9T,,L4 oz th-

* items in th. .1;- Yurr; A~

() 90A confid" " 4.' I 4a " that at leaiet 97'.3y) of -the

I ~~items In tlc ,- 6v..~~ 100hu ~
(d) 75% contident of +,he a ie ztion that at leaet, 97 $1$ cf the

items In the laz- surv~ve 1.00 hourst

(e) 50 confident of the asmiertion ttat a"leant q) 94$ t.4' the

items in the lot c.rvive 100 bour.i.

--- AV

._ - / .,

- I /
L /F

_- !

II



llJ "I i

" -

/ '

' !, .*~

Ap!

ell- - .... 
--

, - -. ,,*. I

-/ ", .. 1.- . ..

"-it" 0 I [ I ""


